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Abstract
We review the fluctuation electromagnetic theory of attraction, friction and heating of neutral
nonmagnetic nanoparticles moving with constant velocity in close vicinity to the solid surface.
The theory is based on an exact solution of the relativistic problem of the fluctuation
electromagnetic interaction in configuration sphere-plane in the dipole approximation.

1. Introduction

Vacuum attraction, friction and heating of neutral nonmagnetic
particles moving nearby a solid surface are the most
accessible effects of electromagnetic fluctuations. Often, the
corresponding problems are considered separately from each
other despite their common physical origin. Thus, the vacuum
attraction force between the bodies caused by fluctuation
electromagnetic interaction (FEI) is known as the van der
Waals (Casimir) force [1, 2], the vacuum friction force is
a dissipative component of this force [3, 4], and heating
(cooling) of a body in the thermal field of another body is a
manifestation of radiation heat transfer mediated by evanescent
electromagnetic waves or by propagating waves [5, 6]. In the
latter case massive black bodies emit thermal electromagnetic
radiation according to the Stefan–Boltzmann law. For particles
with dimensions D < λT (λT is the wavelength of the thermal
radiation), or being situated nearby a heated surface at a
distance d < λT, the radiation heat transfer via evanescent
waves plays a dominating role.

To date, the field of FEI has a lot of puzzles, especially in
the friction problem (see, for instance, discussions in [7–9]).
And even in the case of conservative van der Waals and
Casimir forces, some new issues have attracted enormous
effort (see, for example, [10, 11] and references therein).
Quite recently, some aspects of the aforementioned problems
have been reviewed in [9, 12], but the authors did not
give the necessary attention to several important results
obtained by us in [7, 8, 13–16]. Thus, the criticism raised
in [9, 17] (see also references therein), referring to our

earlier publications [18, 19], is now of only historical value.
Therefore, the basic aim of this paper is to picture our present-
day understanding of the subject.

We treat all the problems of attraction, friction and
heating of a small particle using a closed relativistic theory
of FEI developed in [13, 14]. This allows us to reproduce
not only all existing results being addressed in the involved
nonrelativistic statement of the problem [4, 7–9, 12, 20–23],
but also to get a lot of new results, greatly improving the
general understanding of the subject. Our approach is based
on relativistic and fluctuating electrodynamics, using a local
approximation to the dielectric and magnetic permeability
functions of contacting materials. A moving particle has both
electric and magnetic fluctuating dipole moments in its rest
frame. A fluctuating magnetic moment appreciably influences
FEI and appears even for a resting nonmagnetic object due to
stochastic Foucault currents being induced by random external
magnetic fields penetrating inside the volume of an object
having non-zero magnetic polarizability [24]. An advantage of
the relativistic framework is due to the automatic incorporation
of retardation, magnetic and thermal effects which manifest
strong and nontrivial interactions.

Due to the lack of space, we leave aside another approach
to the problems of attraction, friction and heating, which is
related to the geometry of two parallel plates in rest or in
relative motion. The necessary information can be found
in [9, 10, 12, 25].

This paper is organized as follows.
In section 2 we summarize the problem statement, main

definitions and assumptions relevant to the further theoretical
consideration.
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Figure 1. A moving particle over a half-space and the coordinate
systems used. The x ′, y′, z′ coordinate axes are related to the particle
reference frame K ′ (not shown).

In section 3 we obtain an equivalent form for the Lorentz
electromagnetic force and heating rate of a particle embedded
in the fluctuating electromagnetic field.

In section 4 we derive relativistic formulae for the
conservative and dissipative forces on a moving particle and
its heating rate.

In section 5 we get the expression for an attractive
nonrelativistic force (Casimir force)

In section 6 we obtain the expression for the retarded
vacuum friction force up to the terms linear in velocity.

In section 7 we obtain the expression for the heat flux
between a resting particle and the surface.

In section 8 we consider the application of the results to the
problems of damping motion of an AFM tip, and friction and
heating of nano- and micro-sized particles in the nonretarded
and retarded regimes of interaction with metallic surfaces.

Finally, in section 9 we present concluding remarks.

2. Problem statement

Let us consider a small-sized neutral spherical particle of
radius R that moves in a vacuum parallel to the boundary of
a semi-infinite medium at a distance z0 from the boundary
(figure 1). The particle velocity V is directed along the
x axis and is arbitrary. The half-space z < 0 is filled
by a homogeneous and isotropic medium characterized by
a complex dielectric permittivity ε and permeability μ,
depending on the frequency ω. It is assumed that the particle
has the temperature T1 and the medium and surrounding
electromagnetic vacuum background has −T2. The global
system is out of thermal equilibrium, but in a stationary regime.
Also, it is assumed that the particle is nonmagnetic in its rest
frame and has the electric and magnetic polarizabilities αe(ω)

and αm(ω). The laboratory system K is related to the resting
surface and the coordinate system K ′ is related to the moving
particle. In the dipole approximation z0 � R, the particle can
be considered as a point fluctuating dipole with random electric
and magnetic moments d(t), m(t). Our aim is to determine the
force of FEI applied to a moving particle and its heating rate in
the process of radiation heat transfer.

3. Fluctuation electromagnetic force and heating
rate: general relations

First of all, we obtain several relationships corresponding to
the fluctuation electromagnetic force and rate of radiation
heating of a particle embedded in an electromagnetic field.
In the laboratory K system (figure 1), vectors of electric and
magnetic polarization of a moving particle are

P(r, t) = d(t)δ(r − Vt) (1)

M(r, t) = m(t)δ(r − Vt). (2)

Using (1), (2), the Maxwell equations rot E =
− 1

c
∂B
∂ t , div B = 0 and general relations for the charge and

current densities, ρ = −div P, j = ∂P
∂ t + c · rot M, the

expression for an averaged Lorentz force can be represented
in the form [16]

F =
∫

〈ρE〉 d3r + 1

c

∫
〈j × B〉 d3r

= 〈∇ (dE + mB)〉 + 1

c

〈
∂

∂ t
(d × B)

〉
+ 1

c
〈(V∇) (d × B)〉

= 〈∇ (dE + mB)〉 + 1

c

〈
d

dt
(d × B)

〉
(3)

where the angular brackets 〈· · ·〉 imply total quantum and
statistical averaging and the integrals are taken over the particle
volume. If the electromagnetic field is nonfluctuating, all the
terms in (3) must be taken without averaging. In the case
of stationary fluctuations of the electromagnetic field, the last
term of (3) equals zero and we get

F = 〈∇(dE + mB)〉 . (4)

The heating rate of a particle in the K ′ system is, obviously,
given by the dissipation integral

dQ′

dt ′ =
∫ 〈

j′ · E′〉 d3r ′ (5)

Furthermore, making use of the relativistic transforma-
tions for the current density, electric field and volume in the
integrand (5), we obtain [14]

∫ 〈
j′ · E′〉 d3r ′ = γ 2

(∫
〈j · E〉 d3r − F · V

)
(6)

where γ = (1 − β2)−1/2 is the Lorentz-factor, β = V/c
and F is given by (4). According to Planck’s formulation of
relativistic thermodynamics, dQ′/dt ′ = γ 2dQ/dt [26], and
equation (6) yields

dQ

dt
=

∫
〈j · E〉 d3r − F · V. (7)

Formula (7) has a clear physical meaning: the energy
dissipated is transformed into heat and work of the fluctuation
electromagnetic force performed over the particle. The
dissipation integral in (7) can be rewritten by analogy with the

2
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Lorentz force (the points above vectors d and m denote the
time differentiation):
∫

j · E d3r =
∫

∂P
∂ t

· E d3r + c
∫

rot M · E d3r

= (
ḋ · E + ṁ · B

) + V ·∇ (d · E + m · B) − d

dt
(m · B)

= (
ḋ · E + ṁ · B

) + V · F − d

dt
(m · B) − V

c

d

dt
d × B.

(8)

Again, assuming the case of stationary fluctuations, the
last two terms in (8) are equal to zero after averaging, and
from (7) and (8) we finally get

dQ/dt = 〈
ḋ · E + ṁ · B

〉
. (9)

Moreover, it is not difficult to show that in the K ′
system the form of equation (9) does not change: dQ′/dt ′ =
〈ḋ′ · E′ + ṁ′ · B′〉. Equations (4) and (9) are the primary ones
in further calculations.

4. General relativistic expressions for conservative
and dissipative components of the interaction force
and heating rate

Following our method [7, 8, 13, 14], the quantities on the right-
hand sides of (4) and (9) have to be conveniently written as the
products of spontaneous and induced terms, i.e.

F = 〈∇ (
dsp · Eind + dind · Esp + msp · Bind + mind · Bsp

)〉
(10)

dQ/dt = 〈
ḋsp · Eind + ḋind · Esp + ṁsp · Bind + ṁind · Bsp

〉
.

(11)
The projections of the force Fz and Fx onto directions z, x
of the system K correspond to the attractive conservative
(Casimir) and dissipative (frictional) force. Important technical
details of these calculations can be found in [13, 14]; thus we
only briefly touch upon the main ideas. So, all the quantities
on the right-hand side of (10) and (11) have to be Fourier-
transformed over the time and space variables t, x, y. The
induced field components Eind, Bind must satisfy the necessary
boundary conditions at z = 0 and the Maxwell equations,
which contain the extraneous fluctuating currents induced by
the fluctuating moments dsp, msp. The involved correlators
of dipole moments are then calculated using the fluctuation–
dissipation theorem [2]. The induced dipole moments
dind, mind have to be expressed through the fluctuating fields
Esp, Bsp, being composed of the sum of the contributions
from the surface and vacuum background. The induced
dipole moments are related to the electric and magnetic
polarizabilities of the particle and the fields Esp, Bsp via linear
integral relations. The arising correlators are calculated with
the help of the components of the retarded photon Green
function [2]. Finally, after some tedious but straightforward
algebra, the needed components of the interaction force and

rate of particle heating are given by

Fz = − h̄γ

π2

∫ ∫ ∫

k>ω/c

dω dkx dky exp(−2q0z)

×
{

coth
h̄γω+

2kBT1

[
Re R+

e (ω, k) · α′′
e

(
γω+)

+ Re R+
m(ω, k)α′′

m

(
γω+)]

+ coth
h̄γω−

2kBT1

[
Re R−

e (ω, k) ·α′′
e

(
γω−)

+ Re R−
m(ω, k)α′′

m

(
γω−)]

+ coth
h̄ω

2kBT2
[Im R+

e (ω, k) · α′
e

(
γω+)

+ Im R+
m(ω, k)α′

m

(
γω+)]

+ coth
h̄ω

2kBT2

[
Im R−

e (ω, k) · α′
e

(
γω−)

+ Im R−
m(ω, k)α′

m

(
γω−)]}

− h̄γ

π2

∫ ∫ ∫

k<ω/c

dω dkx dky cos(2q̃0z)

×
{

R±
e , R±

m → R̃±
e , R̃±

m

}

− h̄γ

π2

∫ ∫ ∫

k<ω/c

dω dkx dky sin(−2q̃0z)

×
{

coth
h̄γω+

2kBT1

[
Im R̃+

e (ω, k) · α′′
e

(
γω+)

+ Im R̃+
m(ω, k)α′′

m

(
γω+)]

+ coth
h̄γω−

2kBT1

[
Im R̃−

e (ω, k) ·α′′
e

(
γω−)

+ Im R̃−
m(ω, k)α′′

m

(
γω−)]

− coth
h̄ω

2kBT2

[
Re R̃+

e (ω, k) ·α′
e

(
γω+)

+ Re R̃+
m(ω, k)α′

m

(
γω+)]

− coth
h̄ω

2kBT2

[
Re R̃−

e (ω, k) ·α′
e

(
γω−)

+ Re R̃−
m(ω, k)α′

m

(
γω−)]}

. (12)

Fx = − h̄γ

πc4

∫ ∞

0
dω ω4

∫ 1

−1
dx x(1 + βx)2

× [
α′′

e (ω1) + α′′
m(ω1)

]
W (ω/T2, ω1/T1)

− h̄γ

π2

∫ ∫ ∫

k>ω/c

dω d2k kxq−1
0 exp(−2q0z)

× {
W (ω/T2, ω

+γ /T1)
[
α′′

e (ω+γ )Im R+
e (ω, k)

+ α′′
m(ω+γ )Im R+

m(ω, k)
]

− W (ω/T2, ω
−γ /T1)

[
α′′

e (ω−γ )Im R−
e (ω, k)

+ α′′
m(ω−γ )Im R−

m(ω, k)
]}

− h̄γ

π2

∫ ∫ ∫

k<ω/c

dω d2k kx q̃−1
0 (− sin(2q̃0z))

3



J. Phys.: Condens. Matter 20 (2008) 354006 G V Dedkov and A A Kyasov

×
{

R±
e , R±

m → R̃±
e , R̃±

m

}

− h̄γ

π2

∫ ∫ ∫

k<ω/c

dω d2k kx q̃−1
0 cos(2q̃0z)

×
{

W (ω/T2, ω
+γ /T1)

[
α′′

e (ω+γ )Re R̃+
e (ω, k)

+ α′′
m(ω+γ )Re R̃+

m(ω, k)
]

− W (ω/T2, ω
−γ /T1)

[
α′′

e (ω−γ )Re R̃−
e (ω, k)

+ α′′
m(ω−γ )Re R̃+

m(ω, k)
]}

(13)

Q̇ = h̄γ

πc3

∫ ∞

0
dω ω4

∫ 1

−1
dx(1 + βx)3

× [
α′′

e (ω1) + α′′
m(ω1)

]
W (ω/T2, ω1/T1)

+ h̄γ

π2

∫ ∫ ∫

k>ω/c

dω d2kq−1
0 exp(−2q0z)

× {
ω+ · W (ω/T2, ω

+γ /T1)
[
α′′

e (ω+γ )Im R+
e (ω, k)

+ α′′
m(ω+γ )Im R+

m (ω, k)
]

+ ω− · W (ω/T2, ω
−γ /T1)

[
α′′

e (ω−γ )Im R−
e (ω, k)

+ α′′
m(ω−γ )Im R−

m (ω, k)
]}

+ h̄γ

π2

∫ ∫ ∫

k<ω/c

dω d2kq̃−1
0 (− sin(2q̃0z))

×
{

R±
e , R±

m → R̃±
e , R̃±

m

}

+ h̄γ

π2

∫ ∫ ∫

k<ω/c

dω d2kq̃−1
0 cos(2q̃0z)

×
{
ω+ · W (ω/T2, ω

+γ /T1)
[
α′′

e (ω+γ )Re · R̃+
e (ω, k)

+ α′′
m(ω+γ )Re R̃+

m (ω, k)
]

+ ω− · W (ω/T2, ω
−γ /T1)

[
α′′

e (ω−γ )Re R̃−
e (ω, k)

+ α′′
m(ω−γ )Re R̃−

m (ω, k)
]}

(14)

where h̄, kB are Planck’s and Boltzmann’s constants; the singly
and doubly primed functions denote the corresponding real and
imaginary parts:

ω1 = ωγ (1 + βx), ω± = ω ± kx V (15)

q0 = (
k2 − ω2/c2

)1/2
, q̃0 = (

ω2/c2 − k2
)1/2

,

k2 = k2
x + k2

y

q = (
k2 − ε(ω)μ(ω)ω2/c2

)1/2
,

q̃ = (
ε(ω)μ(ω)ω2/c2 − k2

)1/2

(16)

�e(ω) =
(

ε(ω)q0 − q

ε(ω)q0 + q

)
, �̃e(ω) =

(
ε(ω)q̃0 − q̃

ε(ω)q̃0 + q̃

)

(17)

�m(ω) =
(

μ(ω)q0 − q

μ(ω)q0 + q

)
, �̃m(ω) =

(
μ(ω)q̃0 − q̃

μ(ω)q̃0 + q̃

)

(18)

χ(±)
e (ω, k) = 2(k2 − k2

xβ
2)(1 − ω2/k2c2) + (ω±)2

c2
(19)

χ(±)
m (ω, k) = 2k2

yβ
2(1 − ω2/k2c2) + (ω±)2

c2
(20)

R(±)
e (ω, k) = χ(±)

e (ω, k)�e(ω) + χ(±)
m (ω, k)�m(ω) (21)

R(±)
m (ω, k) = χ(±)

e (ω, k)�m(ω) + χ(±)
m (ω, k)�e(ω) (22)

R̃(±)
e (ω, k) = χ̃ (±)

e (ω, k)�̃e(ω) + χ̃ (±)
m (ω, k)�̃m(ω) (23)

R̃(±)
m (ω, k) = χ̃ (±)

e (ω, k)�̃m(ω) + χ̃ (±)
m (ω, k)�̃e(ω) (24)

W (a/T2, b/T1) = coth

(
h̄a

2kBT2

)
− coth

(
h̄b

2kBT1

)
. (25)

In addition, it should be noted that all the integrals over
the frequency ω are taken in the limits (0,∞), while over
the projections kx, ky of the planar wavevector k in the first
coordinate quadrant. The structure of the integrand functions
within the brackets {R±

e , R±
m → R̃±

e , R̃±
m } is identical (on

account of the replacement to be done) to the structure of
the corresponding functions within the figure brackets of the
integrals at k > ω/c. In definitions frequently used by
other authors, the coefficients �e, �m, �̃e, �̃m coincide with
the reflection factors for electromagnetic waves with different
polarizations [4, 9, 10].

The first integral terms in (13) and (14) describe
the interaction of a particle with vacuum background of
temperature T2 and do not depend on the distance to the surface
z. For the first time, they have been obtained in [15] without
magnetic polarization terms. The second and third terms (and
both terms in (12)) depend on z and describe the interaction
with the surface. In this case, the integrals computed over
the domain of wavevectors k > ω/c are related to evanescent
surface modes, while the integrals computed at k < ω/c are
related to propagating surface modes.

Unlike the similar formulae which have been reported
in [13, 14], formulae (12)–(14) account for the contributions
related to magnetic polarization of the particle, αm. In
total, we see that equations (12)–(14) manifest complete
transposition symmetry over the electric (marked by the
subscript ‘e’) and magnetic (marked by the subscript ‘m’)
quantities. Quite recently, equations (13) and (14) have been
obtained in [27, 28], and equation (12) (at V = 0) in [16]. For
neutral atoms the formulae (12)–(13) must be taken at T1 = 0.
A heating of a neutral atom can be interpreted as some kind
of Lamb shift [7, 8]. This question needs further theoretical
elaboration.

5. Attraction force in the nonrelativistic case

In the nonrelativistic limit β 	 1, γ = 1 formula (12)
becomes simpler. Assuming the equilibrium case T1 = T2 =
T , the result is [16]

Fz = − 2h̄

π2

∫ ∞

0
dω coth (h̄ω/2kBT )

×
∫

k>ω/c
d2k Im

(
e−2q0z[Re(ω, k)αe(ω) + Rm(ω, k)αm(ω)])

− 2h̄

π2

∫ ∞

0
dω coth (h̄ω/2kBT )

×
∫

k<ω/c
d2kIm

(
e2iq̃0z

[
R̃e(ω, k)αe(ω) + R̃m(ω, k)αm(ω)

])

(26)

4
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where Re,m(ω, k) and R̃e,m(ω, k) are given by (21)–(24)
assuming β = 0 and making use of the replacement
�e,m(ω) → �̃e,m(ω). Using the identity coth(x/2) = 1 +
2/(exp(x)−1), equation (26) can also be written as the sum of
the zero-point contribution Fz(0, z) and thermal contribution
Fz(T, z):

Fz(z) = Fz(0, z) + Fz(T, z)

= − h̄

π

∫ ∞

0
dω

(ω

c

)4
∫ ∞

1
duu exp (−2ωzu/c)

× {[(
2u2 − 1

)
�̃e(u, ε) − �̃m(u, ε)

]
αe(iω)

+ [(
2u2 − 1

)
�̃m(u, ε) − �̃e(u, ε)

]
αm(iω)

}

− 2h̄

π

∫ ∞

0
dω

(ω

c

)4
�(ω, T )

×
∫ 1

0
du u Im

{
exp (2iωzu/c)

× [((
1 − 2u2

)
�̃e(u, ε) + �̃m(u, ε)

)
αe(ω)

+
((

1 − 2u2
)
�̃m(u, ε) + �̃e(u, ε)

)
αm(ω)

]}

− 2h̄

π

∫ ∞

0
dω

(ω

c

)4
�(ω, T )

×
∫ ∞

0
du u Im {exp (−2ωzu/c)

× [((
2u2 + 1

)
�e(u, ε) + �m(u, ε)

)
αe(ω)

+ ((
2u2 + 1

)
�m(u, ε) + �e(u, ε)

)
αm(ω)

]}
(27)

where �(ω, T ) = 1
exp(h̄ω/kB T )−1 , �̃e,m(u, ε) in the first

integral (27) is computed at imaginary frequency iω with the
substitution u = (1 + k2c2

(iω)2 )
1/2; �e,m(u, ε) and �̃e,m(u, ε) in

the second and third integrals (27) must be computed at real
frequency ω making use of the substitutions u = ( k2c2

ω2 − 1)1/2

and u = (1 − k2c2

ω2 )1/2, respectively (see (17) and (18)).
In the case T1 = T2 = 0 and αm = 0 formula (27)

reduces to the ‘cold’ Casimir (van der Waals) force between
a particle and the surface, related to the zero-point fluctuations
of an electromagnetic field at large separations [29].

The thermal part of the Casimir force is given by the
second and third terms of equation (27). The first one results
from propagating modes of the surface, while the second is
from evanescent modes of the surface. In total, equation (27)
represents the most general expression for the Casimir force
between a resting particle and the surface at R/z 	 1, which
accounts for both electric and magnetic coupling, thermal and
retardation effects.

It is worthwhile noticing that in metallic contacts the
magnetic coupling effect is not small. Thus, in the case of
ideal conductors at T1 = T2 = 0, it follows from (28)
that the magnetic term equals 1/2 of the electric one, and
consequently its contribution to the total Casimir force equals
30%. The corresponding force is given by Fz(0, z) = − 9h̄cR3

4π z5

in accordance with calculation from first principles [30].
The principal nonvanishing velocity expansion terms in

equation (12) turn out to be proportional to V 2 and may be of
two kinds. The first one behaves like (V/ω0z)2 in comparison
with the zero temperature force (27) (ω0 is the characteristic

absorption frequency), while the second one behaves like
(V/c)2. Correspondingly, the former correction dominates
in the nonretarded regime of interaction, at z/λ < 1, where
λ = c/ω0 is the wavelength of the absorption line. Typically,
the dynamic corrections are small. However, at β > z/λ they
can be dominating.

6. Nonrelativistic dissipative (frictional) force

In what follows we assume μ = 1 and the dielectric function
of the surface is assumed to be ε(ω) = ε′(ω) + iε′′(ω). In the
nonrelativistic limit β 	 1, γ = 1 formula (13) is simplified,
too. Expanding the integrand functions in (13) up to terms
linear in velocity V we get

Fx = FVac
x + FS

x (28)

FVac
x = − 4h̄V

3πc5

∫ ∞

0
dω ω5

{
h̄

4kBT1

(
α′′

e + α′′
m

)

× sinh−2 (h̄ω/2kBT1) + 2 [�(ω, T2) − �(ω, T1)]

×
[
α′′

e + α′′
m

ω
+ 1

2

dα′′
e

dω
+ 1

2

dα′′
m

dω

]}
(29)

FS
x = − h̄V

2π

∫ ∞

0

∫ ∞

0
dω du (ω/c)5

(
u2 + 1

)
exp

(
−2ωz

c
u

)

×
{

2 [�(ω, T2) − �(ω, T1)] ·
[

dα′′
e

dω
Im fe + dα′′

m

dω
Im fm

+ 2

ω

(
α′′

e + α′′
m

) (
�̃e + �̃m

)]

+ h̄

2kBT1
sinh−2 (h̄ω/2kBT1)

[
α′′

e · Im fe + α′′
m · Im fm

]}

− h̄V

2π

∫ ∞

0

∫ 1

0
dω du (ω/c)5

(
1 − u2

)

×
{

2 [�(ω, T2) − �(ω, T1)]

×
[

Re
(

e
2iωz

c u f̃e

) dα′′
e

dω
+ Re

(
e

2iωz
c u f̃m

) dα′′
m

dω

+ 2

ω
Re

(
e

2iωz
c u(�e + �m)

) (
α′′

e + α′′
m

)]

+ h̄

2kBT1
sinh−2 (h̄ω/2kBT1)

×
[
Re

(
e

2iωz
c u f̃e

)
α′′

e + Re
(

e
2iωz

c u f̃m

)
α′′

m

]}
(30)

where the coefficients fe,m, f̃e,m are given by

fe = (2u2 + 1)�e(u, ε) + �m(u, ε) (31)

fm = (2u2 + 1)�m(u, ε) + �e(u, ε) (32)

f̃e = (1 − 2u2)�̃e(u, ε) + �̃m(u, ε) (33)

f̃m = (1 − 2u2)�̃m(u, ε) + �̃e(u, ε). (34)

For brevity, the corresponding arguments of the functions
in the integrands (27) are omitted. In equation (27) and (31)–
(34) the imaginary components of the functions �e,m(u, ε)

and �̃e,m(u, ε) must be computed from (17) and (18) at real
frequency with the substitution u = (1 − k2c2

ω2 )1/2.

5
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Equation (29) represents the net vacuum component of the
friction force, which does not depend on the distance to the
surface. Equation (30) represents the friction force due to the
presence of the surface and, therefore, it depends on z. The
first integral term (30) corresponds to the evanescent modes of
the surface and the second to the wave modes of the surface.
At thermal equilibrium T1 = T2 = T from (28)–(30) we get

Fx = − h̄2V

3πkBT c5

∫ ∞

0
dω

ω5

sinh2 (h̄ω/2kBT )
(α′′

e + α′′
m)

− h̄2V

4πkBT c5

∫ ∞

0

∫ ∞

0
dω du

(
u2 + 1

)
exp

(
−2ωz

c
u

)

× ω5

sinh2 (h̄ω/2kBT )

(
α′′

e Im fe + α′′
mIm fm

)

− h̄2V

4πkBT c5

∫ ∞

0

∫ 1

0
dω du

(
1 − u2

) ω5

sinh2 (h̄ω/2kBT )

×
[
Im

(
e

2iωz
c u f̃e

)
α′′

e + Im
(

e
2iωz

c u f̃m

)
α′′

m

]
. (35)

It is important that, contrary to the Casimir force (27) in
the ‘cold’ limit T1 = T2 = 0, the friction force proves to be
zero. Equation (35) is in agreement with the nonrelativistic
results obtained by several authors [4, 7, 8, 17, 20, 22, 23], still
generalizing them with an account of magnetic effects (via the
structure of the coefficients fe,m, f̃e,m and αm), the vacuum and
surface wave modes of the electromagnetic field.

According to (29), (30) and (35), and taking into
account the relations αe, αm ∝ R3, it appears that the
leading dependences of the friction force components FVac

x
and FS

x versus parameters z, V , R, ωW are the following
(ωW = kBT/h̄ implies the characteristic thermal (Wien)
frequency) [27]: (i) vacuum component:

FVac
x ∝ h̄V ω2

W

c2

(
ωw R

c

)3

, (36)

(ii) surface component:

FS
x ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− h̄V

z2

(
R

z

)3

, ωWz/c 	 1

− h̄V

z2

(
R

z

)3 (ωWz

c

)3
, ωwz/c � 1.

(37)

Comparing the nonretarded friction force (37) with the
‘cold’ Casimir force Fz(0, z) ∝ − h̄cR3

z5 (the latter follows from
(27)) we get FS

x /Fz ≈ V/c 	 1 (assuming the nonrelativistic
case). In the ultrarelativistic case γ � 1 one should use
equations (12) and (13) and the corresponding situation must
be elaborated in more detail.

As far as the force FVac
x is concerned, the corresponding

relativistic limit has been recently discussed in [15]. For
a dielectric particle having a narrow absorption line with
frequency ω0, one may write down α′′

e (ω) = 0.5πω0 R3δ(ω −
ω0), and the final result is

FVac
x = − h̄ω2

0

cγ 4

(
ω0 R

c

)3 ∫ 2γ 2

1/2
dx(1 − x)

× [
�(ω0x/γ, T2) − �(ω0, T1)

]
. (38)

Equation (38) manifests a very intriguing possibility for the
particle to be accelerated in the hot vacuum background, or
even under thermal equilibrium [15]. The involved dynamics
equation mcdβ/dt = γ −3/2 Fx (m is the particle mass) must
be solved simultaneously with the equation for the particle
temperature T1 in its rest frame.

7. Nonrelativistic heating rate

The calculation of the particle heating rate results in the sum of
the velocity-independent heat flux, dQ0/dt , and the dynamics
corrections, of which the lowest-order one turns out to be
proportional to V 2. It follows from (14)

Q̇0 = − 4h̄

πc3

∫ ∞

0
dω ω4

[
α′′

e (ω) + α′′
m(ω)

]

× [�(ω, T1) − �(ω, T2)]

− 2h̄

πc3

∫ ∞

0
dω ω4 [�(ω, T1) − �(ω, T2)]

×
∫ ∞

0
du exp

(
−2ωz

c
u

)
· (α′′

e Im fe + α′′
mIm fm

)

− 2h̄

πc3

∫ ∞

0
dω ω4 [�(ω, T1) − �(ω, T2)]

×
∫ 1

0
du

[
Re

(
e

2iωz
c u f̃e

)
α′′

e + Re
(

e
2iωz

c u f̃m

)
α′′

m

]
. (39)

Of course, Q̇0 �= 0 only when T1 �= T2. The first
integral term of equation (39) is related to the net heat exchange
between the particle and vacuum background and does not
depend on z, the second is related to the evanescent wave
modes of the surface and the third to the surface wave modes,
both depending on distance

The vacuum contribution to the heat flux can be simply
obtained using the Kirchhoff law of thermal radiation and the
particle cross section for the absorption of electromagnetic
radiation [24]. However, the surface contributions to the
heat flux can be worked out only on the basis of the general
theory of electromagnetic fluctuations. In the present form,
equation (39) has been firstly obtained in [29]. In comparison
with the results reported by several authors [6, 9, 12, 31],
equation (39) incorporates both electric and magnetic effects
of the particle polarization and all contributions to the heat flux
resulting from interactions with vacuum modes, evanescent
and wave modes of the surface. In contrast, the formulae
given in [6, 9, 12, 31] take into account only effects related
to the evanescent surface modes, while the involved integrand
functions do not yet contain important contributions resulting
from the currents of magnetic polarization.

At V �= 0, the process of radiative heat transfer manifests
new features. Thus, the heat flux can be observed even at
thermal equilibrium T1 = T2 = T . This is an obvious
consequence of the energy conservation law: even if the
dissipation integral in (7) equals zero, one still has a squared
velocity term arising from the work of the friction force −F·V.
Another contribution results from the Joule dissipation
integral. The explicit formula can be obtained making use
the velocity expansion in equation (14). The sign of the heat
flux at thermal equilibrium may be different. In the case of

6
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small temperature difference �T between a particle and the
surface, the velocity correction dominates, to a rough estimate,
at β2 > �T/T .

In the ultrarelativistic limit γ � 1, at the same conditions
as in section 6 (α′′

e ∼ δ(ω − ω0)), the vacuum background
contributes to the heat flux, as follows [15]:

Q̇ = h̄ω5
0 R3γ −4

2c3

∫ 2γ 2

1/2
dx (�(ω0x/γ, T2) − �(ω0, T1)) .

(40)
According to (38) and (40), the work of the fluctuat-

ing electromagnetic field over the particle leads to its heat-
ing/cooling and slowing down (accelerating). The energy bal-
ance is given by

− dW/dt = Fx V + dQ/dt = h̄ω5
0 R3γ −4

c3

×
∫ 2γ 2

1/2
dx x (�(ω0x/γ, T ) − �(ω0, T )) > 0 (41)

where W is the electromagnetic field energy. This is in
accordance with the general equation (7). The same behavior,
of course, must be characteristic for the process of FEI
regarding the surface modes.

8. Some numerical estimations

8.1. Damping of an AFM tip

A development of the spectroscopy of dissipative (friction)
forces in dynamic vacuum contacts of the AFM tips with
surfaces and an extraction of meaningful physical information
from the measurements is of great importance. A crucial
factor in the interpretation of the experiments is that, in
the noncontact dynamic regime with compensation for the
contact potential difference, the conservative and dissipative
interaction of a tip with the sample is expected to be associated
with the forces of FEI (predominantly, of van der Waals type at
nanometer separations). However, the theoretical calculations
made by several authors have demonstrated that the vacuum
friction is smaller than the observed friction by many orders
of magnitude (see [7–9] and references therein). This enforces
consideration of special mechanisms and conditions for the tip
damping [9].

Here we propose one possible explanation for the damping
effect in line with the obtained theoretical results. Let us
consider the case of two coinciding resonance absorption
peaks characterizing the particle and surface, both located at
ω0 = ωWt0, t0 	 1, ωW is the Wien frequency. Assuming
the nonretarded regime of the interaction, a dominating
contribution to the friction force (35) will be related to the
second term. The corresponding structure of the integrand
function is simplified if use is made of the relations which hold
close to ω0:

�′′
e ≈ Im

εs − 1

εs + 1
= 2ε′′

s

(ε′
s + 1)2 + ε′′2

s

≈ 2

ε′′
s

, and

α′′
e = R3Im

εt − 1

εt + 2
= R3 3ε′′

t

(ε′
t + 2)2 + ε′′2

t

≈ 3R3

ε′′
t

(42)

where εt and εs are the dielectric functions of materials (the tip
and the surface). Then equation (35) reduces to

Fx ≈ − 9

4π

h̄V R3

z5

∫ t0+�t/2

t0−�t/2

dt

sinh2(t/2)

1

ε′′
t (ωWt)ε′′

s (ωWt)

= − 9

π

h̄V R3

z5

ωW

ω2
0

�ω0

ε′′
s (ω0)ε

′′
t (ω0)

(43)

with �t/t0 = �ω0/ω0. In the typical experimental
situation [32, 33], assuming the tip cross section to be parabolic
with the curvature radius R and the height H , equation (43) can
be considered as a local relation in the differential volume d3r .
Then, substituting R3 → 3 d3r/4π in (43) and integrating over
the tip volume at H/R � 1, we obtain [27]

Fx = − 9

8π

V

z2
0

R

z0

kBT

ω2
0

�ω0

ε′′
s (ω0)ε

′′
t (ω0)

(44)

where z0 implies the minimal tip–sample distance and R is
the tip curvature radius. For T = 300 K, R = 35 nm and
z0 = 10 nm (experimental conditions [32, 33]), and assuming
ω0 = 109 s−1, �ω0/ω0 = 0.1, ε′′

s = ε′′
t = 0.01, we get from

(44) the frictional stress 5.2 × 10−11 N s m−1, which is close
to the experimental value (3.5 ÷ 13.5) × 10−11 N s m−1 [33]
and agrees with the observed distance dependence Fx ∝ z−3

0 .
However, in this case the surface atomic species of the tip
and sample (in [33] both are made of gold) must have large
absorption in the radio-frequency range. It is worthwhile
noticing that vibrational transitions in molecular species are
located in the radio-frequency domain, and the same order
of magnitude has the inverse time for the damping motion of
adsorbates measured in friction experiments using the quartz
crystal microbalance technique [34]. Moreover, the order of
the inverse relaxation time (∼109 s in [34]) is characteristic for
all the experiments [32–35] when using a phenomenological
friction model [36].

8.2. Friction forces in metallic contacts

Now we aim to demonstrate the large influence of the magnetic
polarization effect on friction and heat exchange in vacuum
contacts of nonmagnetic metals. Let us consider vacuum
friction between a metallic particle and the metallic surface
in the case of thermal equilibrium, when equation (35) is
correct. First, we assume the nonretarded regime of interaction,
ωWz/c 	 1. The dielectric function of the particle and
surface materials, and the corresponding electric (magnetic)
polarizabilities, are assumed to be [24]

ε(ω) = 1 + 4πσ0i

ω
(45)

αe(ω) = R3 ε(ω) − 1

ε(ω) + 2
(46)

αm(ω) = − R3

2

[
1 − 3

R2k2
+ 3

Rk
cot(Rk)

]

= −R3ϕm(Rk), k = (1 + i)
√

2πσ0ω/c (47)

where σ0 implies the static conductivity.
The calculated electric (including only electric polariza-

tion) and magnetic (including only magnetic polarization) con-
tributions to the friction force (35) are shown in figure 2
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(for a Cu–Cu contact). We have assumed R = 50 nm, T =
300 K, σ0 = 5.2 × 1017 s−1 and V = 1 cm s−1. The accepted
value of V corresponds to the characteristic maximal velocity
of the AFM tip in the dynamic regime [32, 33]. As seen from
figure 2, at z > 10 nm the contribution due to magnetic cou-
pling dominates the contribution from electric coupling by 5–
10 orders of magnitude. However, the corresponding friction
coefficient η = Fx/V = 10−20 N s m−1 (at z = 10 nm, T =
900 K) is still too small to explain the observed experimental
damping [32, 33, 35], where η = 10−11–10−13 N s m−1. Lines
5 and 6 in figure 2 correspond to the vacuum contribution, be-
ing independent of the surface separation.

Figure 3 shows the calculated friction forces in the
retarded regime for large copper particles (with R = 10 and
50 μm) near the surface of copper at different temperatures. In
this case the contribution from electric polarization turns out to
be negligibly small. The friction forces decay like Fx ∼ T a/z
with a = 2–2.2.

For a dielectric particle having a resonance absorption line
in the microwave region, the friction force near a metallic
surface can be somewhat larger than for a metallic particle of
the same radius. In the same way, as in deriving equation (43),
we obtain [27]

Fx = −2.3
h̄V

z2

(
R

z

)3 (ωWz

c

)4

× σ0

ωW

�ω0

ω0

1

ε′′(ω0)
, ω0 = 2.6ωW. (48)

In this case, as follows from equation (48), the friction force
decays like Fx ∼ T 3/z.

8.3. Vacuum heat exchange in metallic contacts

Due to the ‘truncating’ character of the temperature
factors entering into the frequency integrals (39), the main
contribution comes from the low frequency domain ω <

ωW. Taking into account (45) and (46), we have α′′
e =

3R3ω/4πσ0 	 R3, since for normal metals ωW/σ0 ∼
10−5–10−4. At the same time, the function ϕm(x) in
equation (47) has a smooth maximum 0.03 at x = 4.8. This
implies that the contribution of electric dipole moment to the
heating rate of the particle is always significantly smaller than
the contribution of the magnetic moment.

Figure 4 shows the calculated relative rate of cooling of
copper particles with R = 3 and 50 nm versus distance to
the copper surface at elevated temperature (with allowance for
the temperature dependence of resistivity [37]). The numerical
data are normalized to the rate of cooling corresponding to the
Stefan–Boltzmann law:

Q̇BB = −π3

15

(
RωW

c

)2

h̄ω2
W. (49)

According to these results, a heated metal nanoparticle is a
source of intense thermal radiation. Its radiation power is 2–
6 orders of magnitude larger than the radiation power from a
hypothetical black body of the same size.

Figure 2. Plot of the sliding friction force (equation (35)) between a
copper particle (R = 50 nm, V = 1 cm s−1) and the copper surface
in dependence of distance and temperature. Lines 1 and 2 correspond
to the contributions from only the magnetic polarization terms, lines
3 and 4 the contributions from electric polarization and lines 5 and 6
the vacuum component of the friction force (the first term in
equation (35)). Lines 1, 3 and 5 are computed at T = 300 K, lines 2,
4 and 6 at T = 900 K. The distance between the center of a spherical
particle and the surface is R + z.

With neglect of magnetic polarizability and with no
account of retardation effects, but otherwise under the same
conditions, equation (39) yields [6–9, 17]

Q̇ev = − π

40

(
R

z

)3 (
ωW

σ0

)2

h̄ω2
W. (50)

A comparison of formulae (49) and (50) reveals that
Q̇ev/Q̇BB < 0.01 even at R = z. Therefore, it is the
presence of the fluctuation magnetic moment of the particle
that accounts for the dominating contribution to the rate of
heat exchange with a metallic surface. Also, formula (50)
implies that resistive materials like amorphous carbon can
produce an intensive thermal radiation if ωW = σ0 [6].
However, a comparison of the corresponding radiation power
to that of a metallic particle of the same size shows that metal
nanoparticles with radii above ∼10 nm are more effective
radiators. The radiation power of such particles decays slower
with distance (Q̇ ∼ 1/z) than for resistive nanoparticles
(Q̇ev ∼ 1/z3). The use of resistive materials is advantageous
only for very small particles (R < 10 nm) and small
separations from the surface.

An analysis of the contribution due to the vacuum
background (the first integral (39)) shows that it does not
exceed the black body radiation power (49) even for large
particles with radii up to several microns. But in total, over
a wide range of distances from the metal surface, the heat flux
from the micron-sized metal particle significantly dominates
the heat flux emitted by a black body of the same radius (see
figure 5).

It is most interesting to compare the recently obtained
experimental data on radiative heat transfer with theoretical
estimates. Thus, the authors of [38] have reported on
measurements of near-field heat transfer between the tip of a

8
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Figure 3. The same as in figure 3 for particles of radii 10 and 50 μm at V = 1 m s−1. Lines 1, 2 and 3 correspond to equilibrium temperatures
77 K, 300 K and 900 K, respectively. Here and in figures 4 and 5 the distance z is counted from the particle center.

Figure 4. Plots of the relative rate of radiative cooling (equation (39)) for copper nanoparticles with R = 3 nm (a) and R = 50 nm (b) and
various temperatures T1 = 77(1), 300(2) and 900 K(3) as a function of the distance to the copper surface; Q̇BB is the cooling rate for the black
body of the same size. The temperature of the vacuum background and the copper surface is T2 = 0 K.

scanning thermal microscope, being made of electrochemically
etched Pt–Ir wire, and surfaces of gold (Au) and gallium nitride
(GaN). Below we briefly discuss the results relevant to an
Au substrate, because the involved theoretical interpretation is
straightforward.

Our first estimate can be obtained using the data shown in
figure 4 and scaling rule Q̇ ∝ R3. Thus, extrapolating the data
corresponding to line 2 in figure 4(b) to the experimental tip
radius R = 60 nm [38], and taking account of equation (49) we
get Q̇ ≈ 3.4 × 10−7 W at the distance of closest tip approach.
As long as z 	 R, the calculated dependence on z proves to
be weak: Q̇ ∝ (R + z)−1. The measured heat flux is larger,
Q̇ ≈ 8×10−6 W [38], but the involved distance dependence in
the near-field region (up to separations of several tens of nm)
exhibits an extensive plateau, too.

Second, we have recalculated the heat flux using material
parameters of bulk Au both for the tip and sample [39]: ωp =
1.37 × 1016 rad s−1 (plasma frequency) and γ = 5.32 ×
1012 rad s−1 (relaxation frequency). In this case we have got
Q̇ ≈ 5.3 × 10−9 W at the nearest separation distance.

Estimates being much closer to the experimentally
observed ones could be obtained if use is made of a parabolic
tip model (see section 8.1). Thus, for a heated Cu tip (T =
300 K, R = 50 nm, H/R = 100) above the cold surface of
Cu we have got Q̇ ≈ 10−5 W [27]. In the case of a gold
tip above the surface of gold (at T = 300, R = 60 nm,
H/R = 100) the corresponding heat flux is estimated to be
equal to 5.3 × 10−7 W.

Figure 5. Same as in figure 4 for a copper particle with R = 1 μm.

Higher values of the heat flux in the case of copper are
due to larger conductivity. It is worthwhile noting that a
nearly constant heat flux in the near-field regime directly comes
from the contribution related to the magnetic polarization of
the tip. The corresponding effect is explicitly determined
by equation (39). Contrary to this, in order to explain
the experimental results, the authors of [38] have used an
artificial heuristic model with no allowance for the magnetic
polarization effects.

9. Concluding remarks

For the first time, we present the most general results relevant
to the problem of FEI relevant to a small moving nonmagnetic
particle (an atom) and the surface of polarizable medium
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(dielectric or metal). The temperatures of the particle and the
surface (and vacuum background) can be arbitrary assuming
the process of interaction to be stationary. We obtain
relativistic expressions for the components of the fluctuation
force (conservative and dissipative) and heating rate of a
particle near the heated surface. The obtained expressions
take into account the velocity, temperature, retardation effects
and material properties of materials in the most general
form. It is shown that fluctuation magnetic polarization
of metal nanoparticles results in important contributions to
FEI. In the calculations of the dissipative (frictional) force
and rate of heating the magnetic contributions appear to be
larger by several orders of magnitude than the corresponding
contributions arising from electric polarization. We also
present the nonrelativistic (but retarded) expressions for the
attraction/friction force and heating rate.

Finally, we consider several numerical examples of the
obtained results applied to the problems of AFM damping,
friction and heating. In particular, we put forward a possible
mechanism for AFM damping which provides quantitative
agreement with experimental data. The obtained theoretical
estimates of the heat flux in the near-field regime turn
out to be also in reasonable quantitative agreement with
the experimental measurements, demonstrating weak distance
dependence of the near-field heat flux.
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